CSE4203: Computer Graphics
 Chapter - 8 (part - A) Graphics Pipeline

Mohammad Imrul Jubair

Outline

- Rasterization
- The Graphics Pipeline
- Line Drawing Algorithm

Rasterization (1/2)

- The previous several chapters have established the mathematical skeleton for object-order rendering.
- drawing objects one by one onto the screen
- Each geometric object is considered in turn and find the pixels that it could have an effect on.

Rasterization (2/2)

- The process of finding all the pixels in an image that are occupied by a geometric primitive is called rasterization.

Graphics Pipeline (1/5)

- The sequence of operations that is required, starting with objects and ending by updating pixels in the image, is known as the graphics pipeline.

Graphics Pipeline (2/5)

- Two quite different examples of graphics pipelines with very different goals are the
- hardware pipelines used to support interactive rendering via APIs like OpenGL and Direct3D
- the software pipelines used in film production, supporting APIs like RenderMan (by Pixar).

Graphics Pipeline (3/5)

- Hardware pipelines:
- run fast enough to react in real time for games, visualizations, and user interfaces.
- Software pipelines:
- render the highest quality animation and visual effects possible and scale to enormous scenes
- but take much more time to do so

Graphics Pipeline (4/5)

- Remarkable amount is shared among most pipelines
- This chapter attempts to focus on these common fundamentals

Graphics Pipeline (5/5)

Bresenham's Line Drawing Algorithm

Scenario (1/2)

Given,
Start point (XO,YO)
End point (X1,Y1)

Scenario (2/2)

Given,
Start point (XO,YO)
End point (X1, Y1)

Scenario (2/2)

Given,
Start point (XO,YO)
End point (X1, Y1)

How it works (1/9)

How it works (2/9)

Next pixel is chosen (from E or NE) to build the line successively

How it works (3/9)

Next pixel is chosen (from E or NE) to build the line successively

How it works (4/9)

Next pixel is chosen (from E or NE) to build the line successively

How it works (5/9)

Next pixel is chosen (from E or NE) to build the line successively

How it works (6/9)

Next pixel is chosen (from E or NE) to build the line successively

How it works (7/9)

How it works (8/9)

How it works (9/9)

Implicit Equation of a Line (1/5)

$$
\begin{aligned}
& Y=m X+B \\
& \text { or, } Y=\frac{d y}{d x} * X+B \\
& \text { or, } Y d x=X d y+B d x \\
& \text { or, } X d y-Y d x+B d x=0 \\
& \text { or, } a X+b Y+c=0[\text { here }, a=d y, b=-d x, c=B d x] \\
& F(X, Y)=a X+b Y+c=0
\end{aligned}
$$

Implicit Equation of a Line $(2 / 5)$

$$
\begin{aligned}
& Y=m X+B \\
& \text { or, } Y=\frac{d y}{d x} * X+B \\
& \text { or, } Y d x=X d y+B d x \\
& \text { or, } X d y-Y d x+B d x=0 \\
& \text { or, } a X+b Y+c=0[\text { here }, a=d y, b=-d x, c=B d x] \\
& F(X, Y)=a X+b Y+c=0
\end{aligned}
$$

Implicit Equation of a Line (3/5)

If $F(X, Y)=0$, the point (X, Y) on lying on the line

Implicit Equation of a Line (4/5)

If $F(X, Y)=0$, the point (X, Y) on lying on the line

If $F(X, Y)>0$, the point (X, Y) is under the line

Implicit Equation of a Line (5/5)

If $F(X, Y)=0$, the point (X, Y) on lying on the line

If $F(X, Y)>0$, the point (X, Y) is under the line

If $F(X, Y)<0$, the point (X, Y) is above the line

Midpoint Criteria (1/7)

Midpoint Criteria (2/7)

Midpoint Criteria (3/7)

if $\mathbf{d}=\mathbf{0}$, then midpoint is on the line

Midpoint Criteria (4/7)

if $\mathbf{d}=\mathbf{0}$, then midpoint is on the line

If $\mathbf{d}>\mathbf{0}$, then midpoint M
is below the line

Midpoint Criteria (5/7)

if $\mathbf{d}=\mathbf{0}$, then midpoint is on the line

If $\mathbf{d} \boldsymbol{> 0}$, then midpoint M is below the line

If $\mathbf{d}<\mathbf{0}$, then midpoint M is above the line

Midpoint Criteria (6/7)

If $\mathbf{d}>\mathbf{0}$, then midpoint \boldsymbol{M}
is below the line
If $\mathbf{d} \leq \mathbf{0}$, then midpoint \boldsymbol{M}
is above the line

Midpoint Criteria (7/7)

If $\mathbf{d} \leq \mathbf{0}$, then midpoint Mis
above the line, and Eis closer to line,
So, E is selected

If $\mathbf{d} \boldsymbol{> 0}$, then midpoint Mis below the line, and NE is closer to line, So, NE is selected

Successive Updating for E (1/4)

$$
\begin{aligned}
d_{1}= & F\left(M_{1}\right) \\
& =F\left(X_{p}+1, Y_{p}+0.5\right) \\
& =a\left(X_{p}+1\right)+b\left(Y_{p}+0.5\right)+c
\end{aligned}
$$

Successive Updating for E (2/4)

$$
\begin{aligned}
d_{1}= & F\left(M_{1}\right) \\
& =F\left(X_{p}+1, Y_{p}+0.5\right) \\
& =a\left(X_{p}+1\right)+b\left(Y_{p}+0.5\right)+c
\end{aligned}
$$

IF $\mathrm{d}_{1} \leq 0$, select $E\left(X_{P}=X_{P}+1, Y_{p}\right)$
$d_{2}=F\left(M_{2}\right)$

Successive Updating for E (3/4)

$$
\begin{aligned}
d_{1}= & F\left(M_{1}\right) \\
& =F\left(X_{p}+1, Y_{p}+0.5\right) \\
& =a\left(X_{p}+1\right)+b\left(Y_{p}+0.5\right)+c \\
\text { IF } d_{1} & \leq 0 \text {, select } E\left(X_{p}=X_{p}+1, Y_{p}\right) \\
d_{2}= & F\left(M_{2}\right) \\
& =F\left(X_{p}+2, Y_{p}+0.5\right) \\
& =a\left(X_{p}+2\right)+b\left(Y_{p}+0.5\right)+c \\
& =a X_{p}+2 a+b Y_{p}+0.5 b+c \\
& =a X_{p}+a+b Y_{p}+0.5 b+c+a \\
& =\left[a\left(X_{P}+1\right)+b\left(Y_{P}+0.5\right)+c\right]+a \\
& =d_{1}+a
\end{aligned}
$$

Successive Updating for E (4/4)

Every iteration after selecting E,

we can successively update our decision variable with-

$$
\begin{aligned}
\mathrm{d}_{\text {NEW }} & =\mathrm{d}_{\mathrm{OD}}+\mathrm{a} \\
& =\mathrm{d}_{\mathrm{OD}}+\mathrm{dy}
\end{aligned}
$$

Successive Updating for NE (1/4)

$$
\begin{aligned}
\mathrm{d}_{1}= & F\left(M_{1}\right) \\
& =F\left(X_{\mathrm{p}}+1, Y_{\mathrm{P}}+0.5\right) \\
& =\mathrm{a}\left(\mathrm{X}_{\mathrm{p}}+1\right)+\mathrm{b}\left(\mathrm{Y}_{\mathrm{p}}+0.5\right)+\mathrm{c} \\
\text { IF d } & >0 \text {, select NE }\left(X_{P}=X_{P}+1, Y_{P}=Y_{P}+1\right)
\end{aligned}
$$

Successive Updating for NE (2/4)

$$
\begin{aligned}
\mathrm{d}_{1}= & F\left(M_{1}\right) \\
& =F\left(X_{p}+1, Y_{p}+0.5\right) \\
& =a\left(X_{p}+1\right)+b\left(Y_{p}+0.5\right)+c \\
\text { IF } d_{1} & >0, \text { select NE }\left(X_{P}=X_{p}+1, Y_{p}=Y_{p}+1\right) \\
d_{2}= & F\left(M_{2}\right)
\end{aligned}
$$

Successive Updating for NE (3/4)

$$
\begin{aligned}
& d_{1}= F\left(M_{1}\right) \\
&=F\left(X_{p}+1, Y_{p}+0.5\right) \\
&=a\left(X_{p}+1\right)+b\left(Y_{p}+0.5\right)+c \\
& \text { IF } d_{1}>0, \text { select NE }\left(X_{p}=X_{p}+1, Y_{p}=Y_{p}+1\right) \\
& d_{2}= F\left(M_{2}\right) \\
&=F\left(X_{p}+2, Y_{p}+1.5\right) \\
& {[\ldots . \text { Perform the }} \\
& \quad \text { intermediate steps...] } \\
&=d_{1}+(a+b)
\end{aligned}
$$

Successive Updating for NE (4/4)

Every iteration after selecting NE,

we can successively update our decision variable with-

$$
\begin{aligned}
d_{\text {NEW }} & =d_{O D}+(a+b) \\
& =d_{O D}+(d y-d x)
\end{aligned}
$$

Midpoint Criteria with Successive Updating (1/1)

If $\mathrm{d} \leq 0$, then:

- midpoint M is above the line,
- Eiscloser to line, Eis selected

Do:

$$
\mathrm{d}=\mathrm{d}+\Delta \mathrm{E} \text {, Where, } \Delta E=d y
$$

If $\mathrm{d}>0$, then:

- midpoint M is below the line,
- NE is closer to line, NEis selected Do:

$$
\mathrm{d}=\mathrm{d}+\Delta \mathrm{NE}, \text { Where, } \Delta N E=d y-d x
$$

Bresenham's Midpoint Algorithm (1/2)

```
while ( }x<=x1\mathrm{ )
    if d<=0 /* Choose E*/
        d=d + \DeltaE;
    else /* Choose NE */
        y = y+1
        d=d+\DeltaNE
    Endif
    x =x+1
    PlotPoint(x, y)
end while
```


Bresenham's Midpoint Algorithm (2/2)

```
while (x <=x1)
    if d <=0 /* 'd' is not initialized!*/
        d=d+\DeltaE;
    else /* Choose NE */
        y = y+1
        d=d+\DeltaNE
    Endif
    x=x+1
    PlotPoint(x, y)
end while
```


Initializing the Decision Variable (1/3)

$$
\begin{aligned}
d_{\text {INTI }} & =F(M) \\
& =F\left(X_{0}+1, Y_{0}+0.5\right) \\
& =a\left(X_{0}+1\right)+b\left(Y_{0}+0.5\right)+c \\
& =a X_{0}+a+b Y_{0}+0.5 b+c \\
& =a X_{0}+b Y_{0}+c+a+0.5 b \\
& =\left(a X_{0}+b Y_{0}+c\right)+a+0.5 b \\
& =F\left(X_{0}, Y_{0}\right)+a+0.5 b \\
& =a+0.5 b \\
& =d y-0.5 d x
\end{aligned}
$$

Initializing the Decision Variable (2/3)

$$
\begin{aligned}
d_{\text {INTI }} & =F(M) \\
& =F\left(X_{0}+1, Y_{0}+0.5\right) \\
& =a\left(X_{0}+1\right)+b\left(Y_{0}+0.5\right)+c \\
& =a X_{0}+a+b Y_{0}+0.5 b+c \\
& =a X_{0}+b Y_{0}+c+a+0.5 b \\
& =\left(a X_{0}+b Y_{0}+c\right)+a+0.5 b \\
& =F\left(X_{0}, Y_{0}\right)+a+0.5 b \\
& =a+0.5 b \\
& =d y-0.5 d x
\end{aligned}
$$

(there is floating point. floating point operation is slower than integer operation)

Initializing the Decision Variable (3/3)

$$
\begin{aligned}
& d_{\mathbb{N T}}=d y-0.5 d x=2 d y-d x \\
& \Delta E=2 d y \\
& \Delta N E=2(d y-d x)
\end{aligned}
$$

2 is multiplied with $d_{\mathbb{N N T}_{T}}$ to remove the floating point.

- Observe that, ΔE and $\Delta N E$ also multiplied by 2 as those two will be added with $d_{\text {INT }}$ depending on condition.
- Only the sign of the decision variable d is needed to select E or NE pixel, not their values.

Bresenham's Midpoint Algorithm (1/1)

Given:
Start point ($\mathrm{x} 0, \mathrm{y} 0$) End point (x1,y1)
Initialization:
$x=x 0, y=y 0 ;$
$d x=x 1-x 0 ; d y=y 1-y 0 ;$
$d=2 d y-d x ;$
$\Delta \mathrm{E}=2 \mathrm{dy} ; \Delta \mathrm{NE}=2(\mathrm{dy}-\mathrm{dx})$;
PlotPoint(x, y);

```
L00p:
while ( }x<=x1\mathrm{ )
    if d <=0/* Choose E*/
        d=d+\DeltaE;
    else /* Choose NE */
        y = y+1;
        d =d + \DeltaNE;
    Endif
    x = x+1;
    PlotPoint(x, y);
end while
```


Example (1/10)

Start point $(5,8)$
End point $(9,11)$

Example (2/10)

Start point $(5,8)$
End point $(9,11)$

$$
\begin{aligned}
& d y=3, d x=4 \\
& d=2 d y-d x=2 \\
& \Delta E=2 d y=6 \\
& \Delta N E=2(d y-d x)=-2
\end{aligned}
$$

\mathbf{d}	$\mathbf{2}$			
(X, Y)				

Example (3/10)

$$
\begin{aligned}
& \Delta \mathrm{E}=2 \mathrm{dy}=6 \\
& \Delta \mathrm{NE}=2(\mathrm{dy}-\mathrm{dx})=-2
\end{aligned}
$$

\mathbf{d}	$\mathbf{2}$			
(X, Y)	$\mathrm{NE}(6,9)$			
$\mathrm{d}>\mathrm{O}, \mathrm{NE}$				

Example (4/10)

Example (5/10)

\mathbf{d}	$\mathbf{2}$	\mathbf{o}		
(X, Y)	$\mathrm{NE}(6,9)$	$\mathrm{E}(7,9)$		
$\mathrm{d}<=0, \mathrm{E}$				

Example (6/10)

$$
\Delta \mathrm{E}=2 \mathrm{dy}=6
$$

$$
\Delta \mathrm{NE}=2(\mathrm{dy}-\mathrm{dx})=-2
$$

\mathbf{d}	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{6}$	
(X, Y)	$\mathrm{NE}(6,9)$	$\mathrm{E}(7,9)$		

Example (7/10)

$$
\begin{aligned}
& \Delta \mathrm{E}=2 \mathrm{dy}=6 \\
& \Delta \mathrm{NE}=2(\mathrm{dy}-\mathrm{dx})=-2
\end{aligned}
$$

\mathbf{d}	$\mathbf{2}$	\mathbf{o}	$\mathbf{6}$	
(X, Y)	$\mathrm{NE}(6,9)$	$\mathrm{E}(7,9)$	$\mathrm{NE}(8,10)$	
$\mathrm{d}>\mathrm{O}, \mathrm{NE}$				

Example (8/10)

$$
\begin{aligned}
& \Delta \mathrm{E}=2 \mathrm{dy}=6 \\
& \Delta \mathrm{NE}=2(\mathrm{dy}-\mathrm{dx})=-2
\end{aligned}
$$

\mathbf{d}	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{6}$	$\mathbf{4}$
(X, Y)	$\mathrm{NE}(6,9)$	$\mathrm{E}(7,9)$	$\mathrm{NE}(8,10)$	

Example (9/10)

$$
\begin{aligned}
& \Delta \mathrm{E}=2 \mathrm{dy}=6 \\
& \Delta \mathrm{NE}=2(\mathrm{dy}-\mathrm{dx})=-2
\end{aligned}
$$

\mathbf{d}	$\mathbf{2}$	\mathbf{o}	$\mathbf{6}$	$\mathbf{4}$
(X, Y)	$\mathrm{NE}(6,9)$	$\mathrm{E}(7,9)$	$\mathrm{NE}(8,10)$	$\mathrm{NE}(9,11)$
$\mathrm{d}>0, \mathrm{NE}$				

Example (10/10)

$$
\begin{aligned}
& \Delta \mathrm{E}=2 \mathrm{dy}=6 \\
& \Delta \mathrm{NE}=2(\mathrm{dy}-\mathrm{dx})=-2
\end{aligned}
$$

Start point $(5,8)$ End point $(9,11)$

\mathbf{d}	$\mathbf{2}$	\mathbf{o}	$\mathbf{6}$	$\mathbf{4}$
(X, Y)	$\mathrm{NE}(6,9)$	$\mathrm{E}(7,9)$	$\mathrm{NE}(8,10)$	$\mathrm{NE}(9,11)$

Rest of the Octant (1/2)

- Find which octant, based on slopes
- See the relations between start and end points

Rest of the Octant (2/2)

- Modify the algorithm accordingly -

(1) $\operatorname{plot}(x, y)$	(2) $\operatorname{swap}(x, y) ; \operatorname{plot}(y, x)$
(5) $x=-x ; y=-y ;$ $\operatorname{plot}(-x,-y)$	(6) $x=-x ; y=-y ;$ $\operatorname{swap}(x, y) ; \operatorname{plot}(-y,-x)$
$(3) x=-x ;$ swap $(x, y) ; ~ \operatorname{plot}(-y, x)$ (4) $x=-x ; \operatorname{plot}(-x, y)$ $(7) y=-y ;$ swap $(x, y) ; \operatorname{plot}(y,-x)$ (8) $y=-y ;$ $\operatorname{plot}(x,-y)$	

Code (1/1)

- https://github.com/imruljubair/bresenhamsAlgorithm

0ctant:2			
	2		2
NE	3	3	-2
E	3	4	6
NE	4	5	
NE	5	6	-2
E	5	7	
NE	6	8	8

Practice Problem

- Rewrite the midpoint algorithm that works for all the octant.
- Perform the midpoint algorithm for a line with two points $(5,8)$ and $(-9,-$ 11).

